Home > The Body A Guide for Occupants(32)

The Body A Guide for Occupants(32)
Author: Bill Bryson

    Heart disease is now such a common complaint that it is a little surprising to learn that it is largely a modern preoccupation. Until the 1940s, the principal focus of health care was with conquering infectious diseases like diphtheria, typhoid fever, and tuberculosis. Only after many of those were cleared out of the way did it become evident that we had another, growing epidemic on our hands in the form of cardiovascular disease. The triggering event for public awareness seems to have been the death of Franklin Delano Roosevelt. In early 1945, his blood pressure soared to 300/190, and it was clear that this was not a sign of vigor but quite the opposite. When he died soon afterward, aged just sixty-three, the world seemed suddenly to realize that heart disease had become a serious and widespread problem and that it was time to try to do something about it.

         The result was the celebrated Framingham Heart Study, conducted in the town of Framingham, Massachusetts, just west of Boston. Starting in the autumn of 1948, the Framingham study recruited five thousand local adults and followed them carefully for the rest of their lives. Though the study has been criticized for being almost entirely composed of white people (a deficiency since corrected), it did at least include women, which was unusually farsighted for the time, particularly because women were not thought to suffer unduly from heart problems then. The study is now in its third generation of volunteers. The idea from the outset was to determine the factors that led some people to have heart problems and others to escape them. It was thanks to the Framingham study that most of the major risks for heart disease were identified or confirmed—diabetes, smoking, obesity, poor diet, chronic indolence, and so on. In fact, the term “risk factor” is said to have been coined in Framingham.

 

* * *

 

    —

    The twentieth century could with some justification be called the Century of the Heart, for no other area of medicine experienced more rapid and revolutionary technical progress. In a single lifetime, we have gone from barely being able to touch a beating heart to operating on them routinely. As with any complicated and risky medical procedure, it took years of patient work by lots of people to perfect the techniques and devise the apparatus to make it all possible. The daring and personal risk that some researchers took on is sometimes quite extraordinary. Consider the case of Werner Forssmann. In 1929, Forssmann was a young, newly qualified doctor working in a hospital near Berlin when he became curious to know if it would be possible to gain direct access to the heart by means of a catheter. Without any idea what the consequences would be, he fed a catheter into an artery in his arm and cautiously pushed it up toward his shoulder and on into his chest until it reached his heart, which, he was gratified to discover, didn’t go into arrest when a foreign object invaded it. Then, realizing he needed proof of what he had done, Forssmann walked to the hospital’s radiology department, on another floor of the building, and had himself X-rayed to show the shadowy and startling image of the catheter in situ in his heart. Forssmann’s procedure would eventually revolutionize heart surgery, but it attracted almost no attention at the time, largely because he reported it in a minor journal. Forssmann would be a rather more sympathetic figure except that he was an early and ardent supporter of the Nazi Party and the National Socialist German Physicians’ League, which was behind the purging of Jews in the quest for German racial purity. It’s not entirely clear how much personal evil he engaged in during the Holocaust, but at the very least he was philosophically despicable. After the war, partly to escape retribution, Forssmann worked in obscurity as a family physician in a small town in the Black Forest. He would have been forgotten altogether in the wider world except that two academics from Columbia University in New York, Dickinson Richards and André Cournand, whose work was directly reliant on Forssmann’s original breakthrough, tracked him down and publicized his contribution to cardiology. In 1956, all three men were awarded the Nobel Prize in Physiology or Medicine.

         Far more personally noble than Forssmann, and no less stoic in his capacity for experimental discomfort, was Dr. John H. Gibbon of the University of Pennsylvania. In the early 1930s, Gibbon began a long and patient quest to build a machine that could oxygenate blood artificially, to make open-heart surgery possible. To test the capacity of blood vessels deep within the body to dilate or constrict, Gibbon stuck a thermometer up his rectum, swallowed a stomach tube, and then had icy water poured down it to determine its effect on his internal body temperature. After twenty years of refinements, and much heroic swallowing of iced water, Gibbon unveiled the world’s first heart-lung machine at the Jefferson College Hospital in Philadelphia in 1953 and successfully patched a hole in the heart of an eighteen-year-old woman who would otherwise have died. Thanks to his efforts, the woman lived another thirty years.

         Unfortunately, the next four patients died, and Gibbon gave up on the machine. It then fell to a surgeon in Minneapolis, Walton Lillehei, to improve both the technology and the surgical techniques. Lillehei introduced a refinement known as controlled cross-circulation in which the patient was hooked up to a temporary donor (usually a close family member) whose blood was circulated through the patient during the period of surgery. The technique worked so well that Lillehei became widely known as the father of open-heart surgery and enjoyed a great deal of acclaim and financial success. Unfortunately, he wasn’t quite as impeccable in his private affairs as he might have been. In 1973, he was convicted of five counts of tax evasion and a great deal of very imaginative bookkeeping. Among much else, he had claimed a $100 payment to a prostitute as a charitable tax deduction.

    Although open-heart surgery allowed surgeons to correct many faults they previously couldn’t get at, it couldn’t solve the problem of a heart that wouldn’t beat right. That required the device now universally known as a pacemaker. In 1958, a Swedish engineer named Rune Elmqvist, working in collaboration with the surgeon Åke Senning of the Karolinska Institute in Stockholm, built a pair of experimental cardiac pacemakers at his kitchen table. The first was inserted into the chest of Arne Larsson, a forty-three-year-old patient (and himself an engineer) who was very near death from a heart arrhythmia as a result of a viral infection. The device failed after just a few hours. The backup was inserted and it lasted for three years, though it kept breaking down and the batteries had to be recharged every few hours. As technology improved, Larsson was routinely fitted with new pacemakers and lived another forty-three years. When he died in 2002 at the age of eighty-six, he was on his twenty-sixth pacemaker and had outlived both his surgeon Senning and his fellow engineer Elmqvist. The first pacemaker was about the size of a pack of cigarettes. Today’s are no bigger than one American quarter and can last up to ten years.

         The coronary bypass, which involved taking a length of healthy vein from a person’s leg and transplanting it to direct blood flow around a diseased coronary artery, was devised in 1967 by René Favaloro at the Cleveland Clinic in Ohio. Favaloro’s was a story at once inspiring and tragic. He grew up poor in Argentina and became the first member of his family to attain a higher education. Upon qualifying as a doctor, he spent twelve years working among the poor but came to the United States in the 1960s to improve his skills. At the Cleveland Clinic, he was little more than a trainee at first but quickly proved himself adept at heart surgery and in 1967 invented the bypass. It was a comparatively simple but ingenious procedure, and it worked brilliantly. Favaloro’s first patient, a man too ill to walk up a flight of stairs, recovered completely and lived another thirty years. Favaloro grew wealthy and celebrated and in the twilight of his career decided to return home to Argentina to build a heart clinic and teaching hospital, where doctors could be trained and needy people treated whether they could afford payment or not. All of this he achieved, but because of challenging economic conditions in Argentina, the hospital got into financial difficulties. Unable to see a way out, in 2000 he killed himself.

Hot Books
» House of Earth and Blood (Crescent City #1)
» A Kingdom of Flesh and Fire
» From Blood and Ash (Blood And Ash #1)
» A Million Kisses in Your Lifetime
» Deviant King (Royal Elite #1)
» Den of Vipers
» House of Sky and Breath (Crescent City #2)
» The Queen of Nothing (The Folk of the Air #
» Sweet Temptation
» The Sweetest Oblivion (Made #1)
» Chasing Cassandra (The Ravenels #6)
» Wreck & Ruin
» Steel Princess (Royal Elite #2)
» Twisted Hate (Twisted #3)
» The Play (Briar U Book 3)